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l--l igh resolution (. 01 Ix m) reflectance spectra from 
more than 500 soils are analyzed to determine 
spectral variability in a portion of the visible and 
near infrared (0.55-2.32 Ix m), using a procedure 
previously developed for study of thermal infrared 
spectra. Four high spectral resolution basis vectors 
are suj~cient to describe 99.6% of the spectral 
variability of the data set, with residual variability 
probably associated with the measurement process 
and instrument noise. Four broadband spectral 
measurements at .93-1.13 lxm, 2.03-2.31 Ixm, 
• 63- .  74 Ix m, and 1.61-1.80 tx m, together with 
a priori knowledge of the fitting vectors, are sujfl- 
cient to describe the spectra of the soils studied. 

INTRODUCTION 

Although remote sensing studies of the earth's 
surface have been dominated by low spectral reso- 
lution measurements, such as the four broadband 
measurements of the Landsat Multispectral Scan- 
ners with bandwidths of .1/xm, .1/xm, .1/~m, and 
.3/xm, there has been continuing interest in higher 
spectral resolution measurements. Perforce such 
data implies more and more data points as the 
spectral region of interest, e.g., •4-2•5 /xm in the 
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visible and near infrared, is partitioned into finer 
and finer increments. In general, a computational 
problem results if the dimensionality of the mea- 
surements becomes too large, since standard 
methods for spectral analysis, such as principal 
components analysis, encounter difficulties. These 
problems result from two sources: First, the inver- 
sion of very high dimensionality matrices (e.g., 
200x200) is computationally intensive and sub- 
ject to roundoff errors, and, second, the existence 
of noise and spectral redundancy in the data stud- 
ied can produce a tendency for matrix inversion to 
fail due to differencing and division by very small 
numbers• In this paper we study laboratory soil 
spectra obtained at the LARS laboratory facility 
(Stoner et al., 1980), having spectral resolution of 
.01/zm. These reflectance spectra with dimension- 
ality n = 178 represent the range 0.55-2.32 /,~m. 
Using a procedure first developed for data in the 
thermal infrared with dimensionality n = 862 
(Price, 1975), we show that the space of measure- 
ments for the 564 soils is spanned by four fitting 
functions or basis vectors, and that broadband 
measurements in four spectral intervals (.93-1.13 
/xm), (2.03-2.31 /xm), (.63-.74 /xm), and (1.61- 
1.80/xm), together with the known basis vectors, 
are sufficient to characterize the set of soil spectra. 
It follows that spectral discrimination of these soils 
must rely on at most four independent variables: 
Higher spectral resolution measurements provide 
redundant data. Thus the problem of soil classifi- 
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cation from reflectance data is greatly simplified, 
while, at the same time, there is no need for 
additional high spectral resolution data for describ- 
ing these spectra. 

The next section presents the analysis proce- 
dure, which is more direct than that for thermal 
infrared spectra because effects of nonlinearity of 
the Planck function for emitted radiation may be 
avoided in reflectance spectra. The third section 
describes the LARS measurements and the result 
of application of the method to soil spectra. The 
last section summarizes the implications of the 
procedure, suggesting that, at least for soils, the 
value of additional high spectral resolution (.01 
~m) measurements for soils is very limited. 

PROCEDURE 

The procedure used in this paper is a slightly 
modified version of that developed for study of 
spectra from the Infrared Interferometer Spec- 
trometer (IRIS) on the Nimbus 4 satellite (Price, 
1975). The IRIS instrument obtained spectra over 
the earth's surface in the spectral range 6.6-25 
/xm, with each spectrum represented by a set of 
862 values. The description of statistical properties 
of such a high dimensionality measurement space 
requires special procedures, as any brute force 
method which calls for matrix inversion is clearly 
unacceptable. The method developed and em- 
ployed is one of successive approximations, with 
the validity of the procedure determined by its 
convergence. For the soil spectra discussed later 
convergence is extremely rapid: Four spectral vec- 
tors represent the soils data sets to a residual error 
that may be ascribed to measurement error and to 
slight spectral variability, which may be associated 
with specific soils but is not statistically significant 
in the context of the data ensemble. 

We seek a set of spectral basis functions which 
represent the spectral data set, and to find a set of 
broadband spectral intervals which are sufficient 
to determine uniquely the coefficients of these 
basis functions. The procedure is iterative: 1) We 
use the Gram-Schmidt  procedure to select a lim- 
ited set (10) of preliminary basis vectors which 
provide an approximation to the current version of 
the spectral data set. 2) We apply principal com- 
ponents analysis to the matrix resulting from the 
coefficients of these 10 basis vectors. Then from 

these low dimensionality eigenvectors plus the 
original basis vectors we may construct approxi- 
mate eigenvectors for the full spectra. 3) From the 
first eigenvector, which describes most of the data 
set's variability, we select a spectral interval such 
that the wavelength integral of each sample spec- 
trum may be used as a fitting variable to approxi- 
mate the full spectrum. Then we compute this 
fitting function or basis vector. At the next itera- 
tion this fitting function is also to be subtracted 
from the original spectra, and the procedure is 
repeated by returning to step 1. 

We indicate these steps formally. 
. o, x,~) represent a Step 1. Let x = (x l , x2  ... .  , 

spectral measurement of dimensionality n, where 
the superscript a denoting the individual sample 
(in this case a soil spectrum) will frequently be 
deleted. We identify the inner product or dot 
product of two vectors y, z by 

i = 1  

and the norm by ]yl r~,,211/2 Then we may L z.-~ [ / k  . I  • 

construct a unit vector e from a vector y by 
e = y / [ y l .  Typically principal component analysis 
of many natural spectra shows that a single vector 
accounts for a major fraction of variability across 
many data sets. For example, three to five vectors 
are sufficient to explain almost all spectral variabil- 
ity in Landsat MSS and TM data for vegetated 
areas in the United States (Price, 1984). We may 
use the Gram-Schmidt  procedure to obtain a set 
of spectral vectors representing the major variabil- 
ity of an ensemble of measurements. We begin by 
assuming a set of fitted measurement vectors 6x '~ 
of level K, which for K = 0 represent the differ- 
ence from the mean of the data set (x") ;  6 x " =  
x ~ - ( x ) , a n d f o r  K > 0 a r e g i v e n b y  8x ~ = x  " -  

( f i t  to level K), i.e., the result after reduction by 
fitting vectors to level K. We construct a ~asis set 
for the next iteration K + 1 by selecting vectors 6x 
which are not described to within a norm of e, i.e,, 
I~xl > ~, where the selection of • will be de- 
scribed shortly. We begin the Gram-Schmidt  
procedure by averaging the first 10 spectra 
with ]/$x[>e, to construct a unit vector el~-- 
( ½ E 6 x ) / l ~ E ~ x l .  The Gram-Schmidt method 
selects additional basis vectors after subtracting 
out the projection of those previously obtained. 
Thus after obtaining e 1, each measurement vector 
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~x is reduced to 6 x ' = ~ x - ( e l " 6 x ) e  r This as- 
sures that 6x"  e I = 0. Then another 10 vectors 6x' 
with I~x'l > E produce e2, after which the reduced 
vector becomes ~x' = 6x - ( e  1" ¢~x)e 1 - -  ( e  2 " ( ~ X ) e  2. 

Then 6x' after reduction by e 1 and e 2 is used to 
produce e3, etc. By construction each Gram- 
Schmidt vector is orthogonal to all others: e i • ej = 0 
for i 4: j. In practice, the value • must be selected 
so that the required number (also 10 in this analy- 
sis) of Gram-Schmidt  vectors represents a sample 
throughout the entire ensemble of measurements. 
If • is too large, then fewer than 10 Gram-Schmidt  
vectors result, whereas if • is too small, only the 
early spectra in the data set are represented. The 
initial value of • is found by trial and error for the 
data set in question, whereas later values are 
reduced as successive iterations produce better 
and better fits to the original spectra. At this point 
each spectrum may be represented, with a resid- 
ual error, by the 10 Gram-Schmidt  vectors, i.e., 
for all spectra ~x '~= Ec.~e i + r, where the coeffi- 
cients are given by c~' = ( e i ' 6 x  ~) and r is the 
residual. 

Step 2. We now apply the principal compo- 
nents analysis to the covariance matrix formed 
from the 10 coefficients c i representing the vari- 
ability of the ensemble of 6x". The inversion of a 
10 × 10 matrix is straightforward. Then we use the 
resulting eigenvectors C i to construct approximate 
eigenvectors E i = Y'.j Cij¢ j for the original data of 
dimensionality n. Thus the residual spectra 6x" at 
level K may now be expressed by 6x '~ = y-lo ,~ i =  l C i  El, 
where c~ = E i • 6x ~. 

At this point a large fraction of the variability 
of the data set is accounted for in the 10 eigenvec- 
tors E i. However, this description is not very 
useful. Each of the original basis vectors ei is the 
mean of 10 individual spectra, and thus is subject 
to noise in these 10 measured spectra, so that the 
eigenvectors E are also noisy, i.e., they contain 
low amplitude high frequency variability. One may 
consider repeating the analysis, subtracting out 
the projections from the E i already determined, 
and then finding an additional set for the residual 
vectors. However, this increases the number of 
basis vectors, which will eventually begin to ap- 
proach the full spectral dimension n, and the later 
eigenvectors will show increasing effects of noise. 
For both reasons we seek to refine the analysis by 
using the spectral correlations implied in the 
eigenvectors E. 

Step 3. There is a recognizable tendency for 
the majority of the variability of spectral data 
describing natural surfaces to be described by the 
first few eigenvectors E. Generally 60-90% are 
associated with the first eigenvector. Furthermore, 
the eigenvectors are found to be relatively smooth, 
i.e., they vary continuously and relatively slowly 
with wavelength. Since each eigenvector describes 
spectral behavior across the full spectral region, it 
is possible to select a broadband interval repre- 
senting the spectral region where the eigenvector 
is large, and to use the spectral integral across this 
interval S~ = fc3x~dAi  as a single parameter de- 
scribing the total spectral behavior of the eigen- 
vector, where we use the nomenclature for the 
integral 

f ~ d A  i =/'Ai(max) . 
JAi(min) ~//dA. 

This approach is approximate because the other 
(much smaller) eigenvectors also contribute to the 
broadband integral, in a statistical sense. Then we 
use the spectral integral to determine a wave- 
length-dependent fitting function F, which ap- 
proximates the eigenvector explaining the largest 
amount of variability. Thus 

~x ~ ---/7/(A)S ~ / ,  

where F is determined by a best fit across the 
data set, i.e., 

F , ( x )  = 

It is appropriate to normalize F, i.e., we define 

~pi= F i ( A ) / [ f F i ( A ) d A i ]  so that f~pidAi = 1 .  

Then each residual vector 6x ~ at iteration level K 
is approximated by ~x~¢ = ¢pr(A)S~¢, where S~¢ = 
f ~ x  ~ dA k. At this point the original measurement 
vector may be reduced by this fitting function, and 
the process is repeated by going back to Step 1, 
where the number of fitting functions to be sub- 
tracted has increased by one. The advantages of 
this step (3) are: 1) Each fitting function ~o results 
from the statistical fit to ALL the spectra, rather 
than being represented by the limited number 
accepted in the Gram-Schmidt  procedure. 2) Each 
fitting function has as a coefficient a simple spec- 
tral integral, rather than the result of a vector 
inner product of the n-dimensional measured vec- 
tor with the corresponding eigenvector E. Evi- 



116 Price 

dently this step depends on selecting a spectral 
interval in which the major part of spectral vari- 
ability is associated with the first eigenvector E, so 
that q~ describes this first E well. This can only be 
determined in practice, but appears to work well 
for data sets examined. The procedure (Steps 1, 2, 
and 3) is terminated at level K when the residual 
vectors have no observable pattern, or seem to be 
dominated by noise, or when a single eigenvector 
from the principle components analysis no longer 
explains a major part of the spectral variability. In 
the example all three conditions appear simultane- 
ously. 

To this point we have been concerned only 
with spectral variability across the data set, after 
subtracting off the mean. In principle, the mean 
spectrum across an ensemble need not have the 
same properties as the variability about the mean. 
For example, the mean might contain a set of step 
{hnctions with wavelength, while the variability 
varies smoothly with wavelength, or conversely. 
However, because both are the result of the physi- 
cal property of reflectance, we expect them to 
represent the same spectral behavior, and to be 
described by the same fitting functions. Thus it 
should be possible to represent the spectral mean 
(x(A)) by the fitting functions q~. We note, how- 
ever, that this conclusion is not guaranteed: In- 
strumental biases can produce behavior in the 
mean which does not resemble the variability 
across the data set. The data set described in the 
next section does not suffer from this problem, and 
the mean is in fact described by the functions 
describing spectral variability, in the sense that 
amplitude of the ensemble mean (x )  is well ex- 
plained (98.6%) by the four spectral fitting func- 
tions which are found. As a result, the fitting 
fnnetions to be presented next were obtained by 
completing the above analysis without subtracting 
off the mean. Thus for a measured spectrum x" 
we conclude with the approximation at level K 

K 

x~(level K ) =  E q~,(A)S~, 
i = 1  

where each S~ is the integral across the selected 
interval min max ot (Ai ,A i ) of x less the previously de- 
termined fitting series, i.e., 

[ ] = f aa, x - E 
j = l  

We complete this section by observing that the 
integral of each integral f d A  i q~j over the ~ may 
be computed at the beginning in order to simplify 
this formula. 

It would appear that construction of the resid- 
ual spectra would be required at each step in 
order to compute the integral for the coefficient of 
the next fitting function. This is not necessary, as 
the functions q~ are known, having been derived in 
the analysis, so that their integrals are 'also known. 
Let 

b~, = da  i . 

Thus bia is the integral over the ith spectral 
domain of the j t h  fitting function. Then it follows 
directly that given a spectrum x ~, we may con- 
struct the residual after the first fit using the 
integral S~ = f x  ~' da~ by' 

ax~ = x" - S ~ ,  

which leads to the integral 

S,g_ = fx  a dA~ - S'~f~#~ dA 2 = Jx a d A  2 --  b 2 1 8 ~ ,  

etc., and only the set of spectral integrals over x is 
required. Thus we require only the set si = f x d A  i, 
and the precomputed values of bi r Define S~ = s l, 
and let 

i 1 

Si = si - E b i j s j  f o r  i > 1 .  

)=  1 

Then 

where 
expansion, four in the case of the soils data. 

K 

X = E S i ~ i '  
i = 1  

K is the total number  of terms in the 

APPLICATION TO SOILS DATA 

The data used in this study represent an atlas 
of laboratory spectra measured at Purdue Univer- 
sity (LARS). Excellent documentation (Stoner 
et al., 1980) is presented for the purpose and 
methodology of the collection of soil samples and 
their measurement  as reflectance, that is, x (A)=  
Lref lec ted/Lincident  (unitless). The majority of 564 
samples were collected by the Soil Conservation 
Service of the USDA, while a few additional sam- 
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Figure 1. Mean reflectance for 564 soil reflectance spectra. 
The instrument uses two detectors, with the transition at 
about .85 ~m. 

ples were obtained from Brazil and other foreign 
countries. Measurements were made on moist soils 
at .1 bar tension. One soil, Fincastle silt loam, was 
measured a number of times as an indication of 
variability of the measurement process (Stoner 
et al., 1980, Fig. 5). No effort was made to elimi- 
nate these redundant spectra in this analysis. The 
data were acquired with an Exotech Model 20 
radiometer, having a pass band of .55-2.32 /zm. 
The data are available from Purdue University at a 
spectral sampling of .01/~m. The superior quality 
of the measurements is best indicated by the 
results of this analysis, with only the slightest 
indication of instrumental effects, and very low 
noise level. A detailed description of the instru- 
mentation and measurement process may be found 
in Silva et al. (1971), Learner et al. (1973), DeWitt 
and Robinson (1974), and Stoner (1979). 

The mean of the 564 spectra is illustrated in 
Figure 1, while Figures 2 -5  illustrate the spectral 
fitting functions and together with the associated 
spectral interval for spectral integration for estab- 
lishing coefficients. The resemblance of the spec- 
tral mean of the data to the first fitting function 
describing variability suggests, as we would ex- 
pect, that both result from the same physical prop- 
erties of reflectance. By normalization, the integral 
of each fitting function across its corresponding 
spectral interval is 1. One may view the successive 
approximations of a spectrum x ~ as the determi- 
nation of coefficients (by integration) which force 
the residual to have zero mean value within the 
region of the integration. Thus the residual re- 
maining after subtraction gets smaller and smaller 
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Figure 2. Amplitude values (unitless) for the first basis func- 
tion, defined from the interval, .93-1.13/~m. 
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Figure 3. Amplitude values for the second basis function, 
defined for the interval 2.03-2.31/.~m. 
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Figure 4. Amplitude values for the third basis function, de- 
fined for the interval .63- .74/~m. 

as it is forced to zero at more and more locations 
across the full spectral domain. 

We note a difference between laboratory spec- 
tra and remotely sensed spectra, i.e., measure- 
ments through an atmosphere. For the latter, at- 
mospheric water vapor decreases the transmission 
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of radiation from the surface significantly in some 
spectral intervals. For this reason the spectral 
intervals 1.35-1.47 /xm and 1.81-2.02 /xm have 
been excluded during the selection of broadband 
intervals to represent the high resolution spectra. 
As a result, variability in these spectral intervals 
remain at the conclusion of the analysis, somewhat 
inflating the residual unexplained variance. This 
treatment is appropriate for remote sensing appli- 
cations. 

Table 1 presents quantitative information re- 
garding the variability associated with successive 
levels of approximation. The columns have already 
been described except for the definition of the 
total variance in the data set, which is given by 

564 178 [ 1  ~ ]2. 
Variance(K)= Y', E x , ( A i ) -  S,,,q~,,, 

ce = 1 J = m = l 
Evidently the use of spectral integrals and the 
functions q~ is slightly less efficient than the eigen- 
vector analysis in describing variability at each 
step. Thus the variability associated with the first 
eigenvector at a given level of analysis, K, is 
somewhat greater than that eliminated by the re- 
suiting fitting function, e.g., the variance explained 
by the first fitting function (74.2%, the last entry in 

row 2) is less than the variance explained by the 
result of the first eigenvector analysis (87.9%, the 
value in row 1, column 3). However, each fitting 
function or basis fnnction is noticeably smoother 
than the eigenvector which led to the selection of 
the corresponding interval of integration. Further- 
more, evaluation of coefficients by spectral integra- 
tion of x is simple and reduces noise, in the sense 
that integration is an averaging process, while the 
problems with the spectral eigenvectors have al- 
ready been noted. In particular, evaluation of co- 
efficients for spectral eigenvectors E requires con- 
struction of the inner product, i.e., computation on 
the entire spectral interval. It also precludes the 
use of an instrument acquiring a few broadband 
measurements, as is implied by the broadband 
integrals. 

Although the rapid convergence of this proce- 
dure for the soils data set is evident, the identifi- 
cation of a concluding level of approximation is not 
necessarily clear. In the present ease a number of 
t~actors point to the termination of the process. 
First, the dominant eigenveetor after reduction of 
spectra by the first four basis functions contains 
only 43% of the residual variance (row 5, column 
3), suggesting the presence of a mixture of uncor- 
related effects such as noise. This contrasts with 
the identification of well-defined spectral absorp- 
tion features which explain a major part of the 
residual variability for earlier steps in the iteration 
(column 3, rows 1-4). Secondly, the resulting 
eigenvectors after the fourth iteration (not shown) 
do not show large amplitude and smooth spectral 
behavior, in contrast to earlier cases. Additionally, 
trial selection of domains of integration for a hypo- 
thetical filth basis function produces only a very 
minor reduction in variance, again contrary to 
earlier cases. Finally, the last residual spectral 
vectors appear to be very noisy, consistent with 
noise in the description of the instrumentation. 
Figure 6 illustrates the histogram of residuals for 

Table 1 

Fitting Wavelength % Variance in Unexplained Cure. % Variance 
Value Interval First Eigenvector Variance Described 

0 87.9 32,891,000 -- 
l .93 - I. 13 86.0 8,794,000 74.2 
2 2,03-2.31 79.7 1,902,000 94.2 
3 .63-.74 83.1 671,700 98.0 
4 1.61 - 1.80 43.5 112,000 99.6 
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Figure 6. This histogram illustrates the number of spectra 
having a given root mean square residual. The worst fit 
spectra (Figures 7-10) fall at the extreme right ( > 1%). 
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Figure 7. Deviation of the fitted spectrum from the best fit 
(%), worst ease among 564 samples. 
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Figure 8. Deviation of the second worst fitted spectrum (%). 

the spectral data set, and Figures 7 -10  illustrate 
the residuals for four spectra (from 564) having 
the greatest norm, i.e., those illustrating the poor- 
est fit. At this point further statistical processing is 
not warranted. One may consider identifying as 
special cases these spectra with largest residuals 
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Figure 9. Deviation of the third worst fitted spectrum (%). 
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Figure 10. Deviation of the fourth worst fitted spectrum (%). 

and cataloging them. However, it would be desir- 
able to repeat the measurements of these spectra, 
in order to verify the reproducibility of these 
measurements. In addition, measurement of alter- 
nate samples of these soils would be desirable. It 
is not clear that these residual spectral effects are 
significant in the remote sensing context, where 
large areas are to be studied. 

It is not appropriate to list here the 564 soils 
and their respective amplitudes S r Values for any 
soil may be obtained by appropriate integration of 
measured spectra, and the basis functions in Fig- 
ures 2 - 5  permit the reconstruction of high resolu- 
tion data from four broad band measurements. Of 
course, it has not been shown that U.S. soils 
provide an adequate representation of the world's 
soils. The author would appreciate receiving infor- 
mation on other soil groups. 

One question which may be addressed is the 
tendency for clustering in the soil reflectance data. 
To what extent do soil reflectances fall into groups? 
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Figure 11. The scattergram illustrates the variability of the 
second integral versus the first integral• Points at the lower 
left are excluded because reflectances are always positive. 
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Figure 13. The scattergramillustrates the variability of the  
~mrth integral versus the first. 
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Figure 12. The scattergram illustrates the variability of the 
third integral versus the first. 

This question may be addressed by plotting the 
scattergram of values of the S i, i > 1, versus the 
distribution of the first integral, S 1. These results 
are presented in Figures 11-13. We point out the 
decrease in the amplitude of successive coeffi- 
cients S 2, S 3, S 4. Evidently no significant cluster- 
ing exists among reflectance values for the U.S. 
soils data, although there is an apparent correla- 
tion between S 1 and S 2 values which is cancelled 
by the effect of a small number of outliers. 

Finally, we consider the method for handling 
broadband measurements in intervals other than 
those recommended. Evidently the ~ functions 
may be used to derive by integration the results of 
other selections of spectral bands, such as in the 
Landsat instruments. Although such measure- 
ments would be less than optimum compared to 
those selected here, in the sense of instrument 

signal to noise ratio, they, together with the q~ 
functions, would also describe the high resolution 
spectra fully, provided only that the measurements 
are statistically independent of each other• 

CONCLUSION 

A procedure developed for identifying indepen- 
dent spectral variability in the thermal infrared 
has been applied to visible-near infrared spectra 
from a data base of U.S. soils• Mthough thermal 
infrared spectra from satellite height contain nu- 
merous sharp spectral features associated with 
molecular absorption and emission in the earth's 
atmosphere, reflectance spectra for soils are char- 
acterized by broad smooth features• Thus identifi- 
cation of the spectral intervals chosen for soil 
characterization (.93-1.13 /~m, 2.03-2.31 /~m, 
• 63-•74 /,~m, 1•61-1•80 /xm) with specific 
soil/chemical properties does not appear to be 
possible, in contrast with the thermal infrared 
study (Price, 1975, Table 1). This is unimportant, 
as there appears to be no quantitative theory for 
spectra of solid materials such as soils in the 
visible and near infrared, and chemical composi- 
tion is not generally specified in soils specification. 
In contrast, thermal infrared spectra are known for 
most molecules in the atmosphere. Evidently it 
would be desirable to apply the procedure to 
vegetation and to geologic spectra. Both soil and 
atmospheric spectral analyses show the possibility 
of describing high spectral resolution data with 
only a few relatively broad band measurements. 
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Thus 862 spectral values may be described by 
nine basis functions, in the case of atmospheric 
spectra, while 178 measurements may be de- 
scribed by four basis functions, in the case of soil 
spectra. This result suggests the use of relatively 
simple instrumentation and data processing sys- 
tems for inferring soils information from remotely 
sensed data, assuming that field reflectances are 
represented adequately by the laboratory data. 
Finally, as a not insignificant conclusion, we relate 
these findings to the use of the Munsell color 
system by the Soil Conservation Service (SCS) of 
the USDA for describing soil color. The Munsell 
system (Munsell Color, 1988) consists of matching 
soil samples to color patches in a field handbook 
for hue, value, and chroma, or hue, intensity, and 
saturation in the modern nomenclature. The hu- 
man visual system relies on discrimination of these 
three color variables, and Munsell soil charts illus- 
trate samples with three variables. This analysis 
shows that four spectral measurements are suffi- 
cient to describe vis ible/near  infrared variability, 
although the blue portion of the spectrum is miss- 
ing from the data studied. Barring unexpected 
variability in the blue portion of soil reflectance, it 
appears that the semiquantitative method used by 
SCS is capable of discriminating the major part of 
spectral variability of U.S. soils. 
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